宇历三年的时候,离宗和连宗很罕见的达成了全新的共识。
一个公式,在离宗算理和连宗算理之中,具备完全一致的内蕴的话,那么,就可以说,这个公式,具备“绝对性”。
这种“绝对性”,毫无疑问,给予了离宗某种“希望”。
对于他们来说,这简直就是不周之算的灭世一击下,所能找到的最后救赎与唯一福音。
“绝对性”的存在,或许就是在表明,数学实体是在不同的数学公理系统里面普遍存在的。
而如果是这样的话,这个数学实体本身,或许就具有“实际完备”的性质。
这是他们最后的希望了。
或许他们需要寻找到一条新的道路,来探索出这个数学实体的性质。
在这一点上,冯落衣与歌庭派的目的是出奇的一致。
他们甚至暂且放下了些许分歧,共同探索这一领域。
而在这一过程之中,海霆真人也终于崭露头角。
自从连宗证明直觉主义逻辑不比歌庭派的经典逻辑安全之后,他就好像变了个人一样,沉默而寡言。
而在黎京首创之中,他自闭的倾向就更严重了。
但是,这并不妨碍他作为一个算学家,继续发光发热。
他从苏君宇的连续统研究之中受到启发,引入了冯落衣在无限公理中研究良基集合的成果,创立了全新的流派——构造主义。
在某个理论内,以有穷个符号,所定义之一切实体,直到反射序列的高度遍历“所有序数的序数”,便是一个可构造类。
而可构造公理,便是宣告,良基序列下合法集合所构成的总体,与“可构造性集合”,是相等的。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌恶的集合论,并且在冯落衣良基集合的基础上完成了初步的安全性证明。
定义即构造,构造即证明,证明即路秩。
也正是因为如此,他在算器理论也小有突破,进入千机阁的视野之中。
歌庭派对此有些惊恐。
冯落衣与图灵的存在【或许还可以算上王崎】,使得千机阁这个万法门分支门派,一直都是离宗的后花园。
也曾有连宗修士走入过那里,甚至有算君这种连宗总头目开发出了平行的算器理论。
但是,海霆真人是正式走入其中了。
他甚至有向离宗示好的倾向。海霆真人甚至证明,直觉主义和其他逻辑流派的关键差异,就在于“使用有穷个符号,是否就能操纵无穷乃至超穷的实体”。
但海霆真人的出现,对于歌庭派来说,也不完全是坏事。
海霆真人崛起的同时,也提出了许多与离宗过去理论相对应的东西,使得歌庭派得以返照自身,发现许多过去未必能发现的东西。
他们发现,许多相同的数学结构在不同的公理系统之中广泛存在。公理系统的选择,只影响可以证见的数学结构的多寡。
而对公理的选择和分析,实际上就是判断以哪些基础原则作为算学的“起始点”与“基准”。
众多的公设存在,不是出于对算学根基的评判而设立,而是万法门修士们研究活动本身需要这些公设才设立的【比如加法的定义,减法的定义】。
这些更进一步的加强了离宗对“算学实体”的信心。
也就是在这个背景之下,苏君宇通过海霆真人的思路,提出了名为“传递模型”的骚操作。
如果存在一个数学公理系统甲,其自身具有一致性,那么就存在这个系统的模型。
将“系统甲是一致”的这个公理,加入原来的系统,就得到了“系统甲是一致的加入系统甲之后的系统”。然后,就有“系统甲是一致的加入系统甲之后的系统是一致的”。再将“系统甲是一致的加入系统甲之后的系统是一致的”,加入“系统甲是一致的加入系统甲之后的系统”……如此反复,直到无穷。